188金宝搏备用网址 > 人工智能 > www.188jinbaobo.comRas基因是很多人类癌症中经常发生突变的癌基因,研究人员通过研究发现
2019-12-13
www.188jinbaobo.comRas基因是很多人类癌症中经常发生突变的癌基因,研究人员通过研究发现

www.188jinbaobo.com 1

转眼间6月份就快要过去了,这个月又有哪些研究论文值得我们深入学习一下呢?谷君根据本月新闻的点击量、研究领域、热度筛选出了6月份的重磅级研究Top10,供大家学习交流。

时光总是匆匆而逝,2017年也已接近尾声,迎接我们的将是崭新的2018年,2017年三大国际着名杂志Cell、Nature和Science依旧刊登了很多突破性耐人寻味的研究,本文中谷君首先对2017年Cell杂志发表的重磅级亮点研究进行盘点,分享给大家!与各位一起学习!

转眼间10月份已经接近尾声了,这个月又有哪些亮点研究值得我们深入学习一下呢?小编根据本月新闻的点击量、研究领域、热度筛选出了10月份的重磅级研究Top10,供大家学习交流。

www.188jinbaobo.com 2

www.188jinbaobo.com 3

深度解读:为什么昼夜节律调控机制获得2017诺贝尔奖?

HMG:喝茶会诱发女性机体表观遗传改变

Cell:重磅!科学家成功绘制出人类癌细胞的全局基因互作网络!

https://www.nobelprize.org/nobel_prizes/medicine/laureates/2017/press.html

doi:10.1093/hmg/ddx194

doi:10.1016/j.cell.2017.01.013

北京时间10月2日下午17:30,2017年诺贝尔生理学或医学奖揭晓,来自缅因大学的研究者Jeffrey C. Hall, 布兰迪斯大学的研究者Michael Rosbash和洛克菲勒大学的研究者Michael W. Young因发现控制昼夜节律的分子机制而获得此奖。

表观遗传学改变就是一种能够帮助开启/关闭基因表达的化学修饰作用,近日,一项刊登在国际杂志Human Molecular Genetics上的研究报告中,来自瑞典乌普萨拉大学的研究人员通过研究发现,女性喝茶或许会诱发特殊基因出现表观遗传学改变,而这些基因被认为和癌症和雌激素代谢之间会发生相互作用。

癌症是一种异质性疾病(heterogeneous disease),而且不同的癌症亚型之间也有着不同的遗传根源,因此多种类型的癌症往往会依赖于多种途径得以发展,而且其对抗癌制剂的反应也并不相同,目前对于研究人员最大的挑战就是如何精确地定义癌症利用的多种途径,以及寻找癌症易感性来帮助开发新型抗癌疗法。

地球上的生命适应了地球的自转规律,很多年以来,我们都知道,包括人类在内的很多有机生命都拥有一种特殊的内部时钟,这种时钟能够帮助他们预料并且适应每天的节律,但这种特殊的内部时钟具体是怎么工作的呢?研究人员Jeffrey C. Hall、Michael Rosbash和Michael W. Young就对生物钟进行了深入研究,阐明了其内在的工作机制,相关的研究发现解释了植物、动物以及人类如何适应自身的昼夜节律,以便能够与地球的旋转同步。

我们都知道,我们的生活环境和生活方式,比如对食物的选择、吸烟以及暴露于化学物质中等等都会导致表观遗传学发生改变;这项研究中,研究者调查了是否喝茶及喝咖啡会引发表观遗传学的改变,此前研究结果表明,咖啡和茶在调节人类疾病风险上扮演着关键角色,比如抑制肿瘤进展、降低炎症并且影响雌激素代谢,而其中的机制或许都会通过表观遗传学改变所介导。

近日,刊登在国际着名杂志Cell上的一篇研究报告中,来自怀海德研究所和博德研究所的研究人员就取得了巨大突破,他们成功鉴别出了对14种人类急性髓性白血病癌细胞增殖和生存必须的一系列关键基因,此前研究人员并未利用基因组测序手段对这些癌细胞的特性进行研究;这项研究中研究人员将基因本质图谱同当前的遗传信息相结合进行研究阐明了多种癌症的特性。

利用果蝇作为模式动物,今年的诺奖得主分离到了一种能够控制日常正常生物节律的特殊基因,研究人员通过研究发现,这种基因能够编码特殊的蛋白,当处于夜晚时该蛋白能够在细胞中进行积累,在白天时就会发生降解;随后,研究人员还鉴别出了额外的蛋白质组分,同时他们还阐明了一种能够指导细胞内部自我维持时钟发条(self-sustaining clockwork)的特殊机制;如今研究者通过研究其它多细胞有机体中细胞的相同原则认识到了生物钟的关键功能。

研究结果表明,表观遗传学改变会在喝茶的女性机体中发生,而并不会在男性机体中发生。更有意思的是,很多表观遗传学改变往往发生在参与癌症和雌激素代谢的基因中。此前研究结果表明,喝茶能够降低机体的雌激素水平,而这就阐明了男性和女性对喝茶所产生的机体生物学反应的差异,研究者指出,相比男性而言女性往往也能喝大量的茶,而这也能增加我们寻找喝茶和女性之间关联性的机会。当然本文研究并未发现喝咖啡个体机体中出现的任何表观遗传改变。

文章中,研究者重点对和Ras癌基因相关联的基因和蛋白通路进行了研究,Ras基因是很多人类癌症中经常发生突变的癌基因,而且其在急性髓性白血病的发病过程中扮演着重要角色,研究者Tim Wang说道,从很大程度上来讲,突变的Ras蛋白自身往往被认为是无法用药物进行靶向作用的,但在本文研究中我们找到了另外一种方法,并且基于这种方法发现了Ras突变的癌症所依赖的一些基因,而且我们希望这些基因是利用药物可以进行控制的,但很不幸的是诸如这些Ras合成致死性基因往往很难进行鉴别。

Sci Rep:突破!新方法或可有效清除受HIV感染的细胞

www.188jinbaobo.com 4

Cell:重大突破!模拟禁食效果的饮食或可逆转糖尿病

DOI:10.1038/s41598-017-09129-w

Science子刊:突破性成果!科学家开发出能有效治疗多种癌症的新型组合性疗法

doi:10.1016/j.cell.2017.01.040 doi:10.1126/scitranslmed.aai8700

如今科学家们成功实现了通过药物就能够有效抑制HIV的复制,目前他们的关注点转移到了如何有效清除HIV,近日,来自日本熊本大学的研究人员通过研究开发出了一种能够有效毁灭HIV的新型化合物,当将这种化合物引入到受感染的细胞中时,病毒的萌芽就会被限制在宿主细胞内部,随后这些细胞就会通过细胞凋亡的方式自然死亡,相关研究刊登于国际杂志Scientific Reports上。

DOI: 10.1126/scitranslmed.aal5148

在一项新的研究中,来自美国南加州大学、麻省理工学院科赫研究所和加州大学旧金山分校的研究人员证实一种旨在模拟禁食效果的饮食(fasting-mimicking diet, FMD)似乎通过细胞重编程逆转糖尿病。相关研究结果发表在2017年2月23日的Cell期刊上,论文标题为“Fasting-Mimicking Diet Promotes Ngn3-Driven β-Cell Regeneration to Reverse Diabetes”。

研究人员认为这种新型方法未来或有望帮助有效清清除AIDS患者机体中的HIV病毒;近些年来多种药物疗法成功实现了抑制HIV病毒的目的,然而这些方法无法有效清除宿主机体中潜在HIV病毒库中的病毒颗粒,这些病毒颗粒在宿主细胞中处于休眠状态,随着患者药物疗法的停止,其体内的HIV就会死灰复燃,重新开始在机体中肆虐;移除潜在的HIV病毒库就是艾滋病研究领域的终极目标。

近日,来自德克萨斯大学MD安德森癌症研究中心的研究人员通过研究开发出了一种新型疗法,这种疗法能够有效治疗因RAS基因突变诱发的疗法耐药性癌症,RAS基因突变在很多癌症中都存在;研究者表示,这项临床前研究结合了能够将靶向作用PARP及MEK(丝裂原活化蛋白激酶)的抑制剂疗法。相关研究刊登于国际杂志Science Translational Medicine上。

这项研究以小鼠和人类细胞为实验对象,是由论文通信作者、南加州大学伦纳德-戴维斯老年医学学院长寿研究所主任VLongo领导的。它证实这种模拟禁食效果的饮食促进新的产生胰岛素的胰腺β细胞生长,从而降低小鼠体内的1型和2型糖尿病症状。

Cell:新发现挑战了存在将近100年的癌症代谢观点

研究者表示,在超过90%的胰腺癌、50%的结直肠癌和30%的肺癌中都能发现RAS基因突变的存在,而且这种突变在其它类型癌症中所出现的比例也较高,但很不幸的是,这些癌症通常都会对传统的疗法产生耐受性从而导致患者预后较差。研究者Gordon Mills表示,目前我们需要开发出针对新型疗法来治疗致癌RAS突变诱发的癌症,基于本文研究我们发现,将PARP和MEK抑制剂进行合理结合或许就能够有效治疗RAS突变引发的癌症。

Cell:首次构建出人癌基因依赖图谱,有助鉴定出潜在新的治疗靶标

doi:10.1016/j.cell.2017.09.019

PARP抑制剂能够细胞中DNA修复的关键通路,从而就能够有效阻断携带DNA修复机制缺失的癌症继续发展,但由于肿瘤细胞具有不断适应疗法所诱发压力的能力,因此癌细胞会很快获得对疗法的耐受性;而MEK抑制剂常常能够影响那些信号通路发生过度表达的癌症。

doi:10.1016/j.cell.2017.06.010

在一项新的研究中,来自美国德克萨斯大学西南医学中心儿童医学中心研究所的研究人员发现乳酸给生长中的肿瘤提供燃料,从而挑战了存在将近一个世纪的瓦尔堡效应。相关研究结果发表在2017年10月5日的Cell期刊上,论文标题为“Lactate Metabolism in Human Lung Tumors”。

Nature:重磅级成果!科学家解析为何心脏无法进行自我修复!

在一项新的研究中,来自美国哈佛大学-麻省理工学院布罗德研究所和达纳-法伯癌症研究所的研究人员构建出肿瘤细胞存活所依赖的基因的综合图谱。相关研究结果发表在2017年7月27日的Cell期刊上,论文标题为“Defining a Cancer Dependency Map”。这个由布罗德研究所和达纳-法伯癌症研究所发起的项目旨发现肿瘤细胞存活和生长所依赖的基因。

这项新的发现可能代表了人们如何看待癌症代谢的一次重大转变,并且为研究肺癌的疗法和成像技术开辟了一项新的途径。肺癌是全世界癌症死亡的主要原因。

doi:10.1038/nature22979

英国伦敦癌症研究所药物发现专家Paul Workman教授说,“这项重要的研究阐明了人癌细胞如何依赖于特定的基因。鉴定出的这些基因可能是发现新的靶向疗法的药物开发靶标。”这项研究人员研究了代表着20多种癌症的500多种不同的人癌细胞系。这些癌细胞系是科学家们能够在实验室中持续培养的细胞,而且他们研究了关闭上千个基因的影响。

论文通信作者、德克萨斯大学西南医学中心儿童遗传学与新陈代谢系主任、CRI遗传与代谢疾病项目主任、CRI教授Ralph DeBerardinis博士说,“我们对我们的研究结果感到非常震惊。对癌症代谢的最为古老的观察结果,即瓦尔堡效应,指出乳酸是肿瘤的一种废弃物。这一概念推动了这一领域的大量研究。我们的发现是我们对肿瘤代谢的看法产生根本上的变化。”

心肌是机体中不可再生的组织,同时这也是引发心脏病患者死亡的主要原因;为了能够开发出帮助心脏自我修复的新方法,近日来自贝勒医学院和德州心脏研究所的研究人员通过对参与心脏细胞功能的多个通路进行研究,发现了抑制心脏自我修复的多个过程之间的一种此前未知的关系,相关研究刊登于国际杂志Nature上,该研究或为后期科学家们开发新策略来促进心脏细胞再生提供了新的思路和希望。

Cell:地球生命起源新假说?

Cancer Cell:突破!科学家开发出能促进癌细胞“自杀”但不损伤健康细胞的新型抗癌疗法

www.188jinbaobo.com ,研究者James Martin教授表示,我们正在调查为何心肌无法更新;本文研究中,我们重点对心肌细胞的两个途径进行了研究,分别是Hipp途径和抗肌萎缩蛋白糖蛋白复合物途径,Hipp途径主要负责阻断成体心肌细胞再生,而DGC途径则对于心肌细胞的正常功能非常必要。

doi:10.1016/j.cell.2017.02.001

doi:10.1016/j.ccell.2017.09.001 doi:10.1038/nature07396

研究人员非常感兴趣研究DGC成分发生的突变,因为携带这些突变的患者往往会患上肌营养不良症。此前研究中研究者发现,DGC途径的组分或许会同Hippo途径成员相互作用;而本文研究中,研究者Martin及其同事在动物模型中对上述相互作用的结果进行了研究,研究人员对小鼠进行遗传性修饰使其缺失参与一种或多种途径的基因,随后确定小鼠心脏修复损伤的能力,这些研究首次发现,DGC途径组分:肌营养不良蛋白1能够直接同Hippo途径组分Yap相结合,这种相互作用抑制了心肌细胞的增殖。

进化仿佛是许多"鸡与蛋"的问题的合集,不过,其中最有意思的一个问题是"在核酸出现之前,地球上是否有生命的存在?"

近日,一项刊登在国际杂志Cancer Cell上的研究报告中,来自阿尔伯特-爱因斯坦医学院(Albert Einstein College of Medicine)的研究人员通过研究首次发现了一种能直接促进癌细胞“自杀”同时并不影响机体健康细胞的特殊化合物,这种新型疗法能够直接抵御急性髓性白血病细胞,而且还能够帮助有效供给其它类型的癌细胞。

www.188jinbaobo.com 5

如今,研究者们发现了磷元素出现之前的最早的生化反应。众所周知,磷元素是遗传物质核酸的必要组成元素。也就是说,在核酸生命出现之前,地球上就已经出现了代谢反应。

研究者Evripidis Gavathiotis教授说道,相比当前其它抗癌疗法而言,我们所开发的新型靶向化合物更加有效,其能够促进癌细胞自我毁灭;在理想情况下,这种新型化合物能够同其它疗法相结合来更加快速且有效地杀灭癌细胞,同时产生的副作用较小,而采用标准化疗法常常会使得患者产生一定的副作用。

Nat Med:移除衰老细胞有望延长人类寿命

来自波士顿大学以及MIT的科学家们发现了一系列不需要磷元素参与的生化代谢通路。这一发现无疑填补了我们对引发地球生命起源的复杂生化反应的认知。

AML几乎占到了三分之一的新发白血病类型,每年在美国这种类型的白血病会引发1万多名患者死亡,几十年来,AML患者的存活率一直保持在大约30%左右,因此目前研究人员迫切需要开发出更好的疗法。文章中,研究人员所发现的新型化合物能够通过诱导细胞凋亡的方式来帮助有效抵御癌症,在胚胎发育的过程中,细胞凋亡能够“修剪”掉过多的组织,而且某些化疗药物能够通过损伤癌细胞的DNA间接诱导细胞凋亡。

doi:10.1038/nm.4324

我们如今对生命的理解是基于复杂的化学反应,这一化学反应不仅需要模板用于复制,而且需要足够的能量将其从简单的化学分子组成有序的复合体。

Nat Genet:为何榴莲闻起来如此“臭”?科学家全基因组测序找原因!

在一项新的研究中,来自美国、荷兰和韩国的一个国际研究团队证实靶向移除随着年龄增加在很多脊椎动物组织中堆积的衰老细胞(senescent cell, SnC)会显著地延缓年龄相关的疾病发作。相关研究结果发表在2016年6月那期Nature Medicine期刊上,论文标题为“Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment”。

那么首先我们需要面临一个问题:究竟哪一个新进化出来?单个化学代码的复杂度,还是将简单的化合物通过吸收能量转变为复杂高级有机物的反应呢?

doi:10.1038/ng.3972

这个研究小组发现了一种新的候选药物通过选择性摧毁衰老细胞来缓解年龄相关的退行性关节疾病,如骨关节炎。这些发现提示着选择性地移除关节中的衰老细胞可能降低创伤性骨关节炎产生并且允许新的软骨生长和关节修复。

Cell:打破常规!发现独特的DNA编辑功能

日前,发表在国际着名杂志Nature Genetics上的一篇研究报告中,来自新加坡国立癌症中心等机构的研究人员通过研究首次完成了对榴莲全基因组图谱的解析,榴莲是一种珍贵的热带水果,素有“水果之王”的称号。

衰老细胞随着年龄的增加在很多脊椎动物组织中堆积,而且存在于年龄相关的疾病部位中。尽管这些细胞在伤口愈合和损伤修复中发挥着不可或缺的作用,但是它们可能也促进组织中的癌症发生。比如,在膝盖和软骨组织等关节中,在遭受损伤后,衰老细胞经常在损伤部位不会被清除掉,因而促进骨关节炎产生。

doi:10.1016/j.cell.2017.02.020

研究者Teh Bin Tean表示,作为一名遗传学家,我对榴莲的基因组非常好奇,是什么基因让榴莲产生了刺鼻的气味?而且榴莲带刺的外壳又是如何产生的呢?基于最先进的测序平台,研究人员对猫山王榴莲进行了基因组图谱的绘制,这种榴莲因其具有极其细腻的口感和强烈的香气而闻名于世,在当地的榴莲世界里被认为是榴莲中的王中之王。

Nat Commun:突破!科学家开发出能保护机体抵御HIV样病毒的新型试验疫苗

一种单细胞纤毛虫物种以一种看似不可能的方式使用细胞转录复合体。在一项新的研究中,来自瑞士伯尔尼大学的研究人员首次详细地描述了 “垃圾DNA”在遭受降解之前转录的机制。这种机制是非常巧妙的。

研究者发现,榴莲的基因组中含有大约4.6万个基因,几乎是人类基因数量的两倍,基于最新产生的基因组数据,随后研究人员对榴莲的进化进行了研究,并且追溯到了6500万年前与可可树的关系。随后研究人员重点研究了到底是什么让榴莲问起来那么“臭”?通过对比榴莲树不同部分的基因表达模式,包括树叶、根部以及成熟的果实,研究人员鉴别出了一类名为MGLs的基因(methionine gamma lyases,甲硫氨酸γ裂解酶),这种基因能够调节榴莲中挥发性硫化物Science:新方法制造有潜力治疗癌症和HIV的苔藓虫素,产率提高上万倍

doi:10.1038/ncomms15711

它听起来像是一场设计竞赛中的获奖设计方案:当小片段信息太短而不适合放入读取设备中时,如何读取这些小片段信息呢?将它们缝接在一起形成一条更长的链,然后将这条链闭合,从而产生一种便于使用的环。这种环甚至能够被这种读取设备重复地读取。这就是一种被称作第四双小核草履虫(Paramecium tetraurelia)的单细胞纤毛虫物种如何将小切离DNA片段转录为具有调节功能的小RNA。

doi:10.1126/science.aan7969 doi:10.1126/science.aao5346

近日,一项刊登在国际杂志Nature Communications上的研究报告中,来自杜克大学人类疫苗研究所的研究人员通过对猴子进行研究开发出了一种能够保护机体免于HIV样病毒感染的新型疫苗,而且目前这种HIV疫苗策略在泰国人体III期临床试验中已经取得了成功。将3个甚至更多靶点加入到所调查的疫苗中或能保护超过一半接种疫苗的动物免于猿人免疫缺陷病毒的感染。

当来自伯尔尼大学细胞生物学研究所的Mariusz Nowacki发现小RNA在清除来自草履虫DNA的片段中发挥着调节的功能时,他和他的团队研究起了其中的分子机制:这些小RNA是怎么产生的?它们的确切功能是什么?他们很快发现在对DNA片段的清除中似乎存在一种反馈循环。这些DNA片段之前被认为是没有用处的。它们是从草履虫基因组中切离出来的,随后被降解掉。然而,在降解之前,它们起着小RNA模板的作用,它们所产生的小RNA接着有助切割出更多的这些DNA片段。一旦启动,这种金字塔式系统即通过产生小RNA自我强化。

一种从海洋害虫中分离出来的药物有望治疗一些最为严重的疾病,而且科学家们也想要知道它到底多有效---只要他们能够获得更多的这种药物。就目前的情况来看,世界上的这种化学物的供应量大约下降到20世纪90年代的一半,而且很难从产生它的海洋生物中提取出足够的数量。

研究者Barton F. Haynes说道,这种在泰国临床试验中进行检测的名为RV144的疫苗体系拥有31%的有效率,而且也是唯一一个HIV所调查的疫苗,目前能够向个体提供适度的保护来抵御HIV的感染;本文研究中,通过对猴子进行研究,研究人员发现,利用这种新型五价疫苗或能够使得保护效率增加到55%。

Cell:长生不老药有望即将来临

如今,在一项新的研究中,来自美国斯坦福大学的研究人员在实验室中发现一种更简单、更高效的方法来制造这种需求量日益增加的化合物。他们新合成的药物将足以继续开展临床试验来测试它作为一种癌症免疫治疗药物的疗效,以及治疗阿尔茨海默病和HIV的疗效。相关研究结果发表在2017年10月13日的Science期刊上,论文标题为“Scalable synthesis of bryostatin 1 and analogs, adjuvant leads against latent HIV”。

研究者Haynes及其同事开始联合研究在泰国来时进行RV144的人类疫苗研究,如何他们添加了新的靶标来诱发试验对象机体中产生抗体来对HIV包膜区域产生反应。这些抗体很容易被诱发,通过将额外的病毒包膜区域添加到所调查的疫苗中,研究人员就能够明显改善试验动物应对难以中和的猿猴病毒的保护作用,这种猿猴病毒和HIV相当。

doi:10.1016/j.cell.2017.02.031

论文通信作者、斯坦福大学化学教授Paul Wender说,他一度对这个项目感到非常兴奋,“我穿上我的实验室外套,做了一些结晶实验”。对他来说,这篇论文是几十年研究的结果。

www.188jinbaobo.com 6

在一项新的研究中,研究人员发现一种肽能够选择性地寻找和破坏阻止组织正常更新的衰老细胞,并且证实定期注射这种肽能够改善自然衰老的小鼠和经过基因改造快速衰老的小鼠的寿命。这项概念验证研究发现一种抗衰老细胞疗法能够逆转年龄相关的毛发丢失、肾功能较差和虚弱。这种疗法当前正在接受测试它是否也延长寿命,而且人体安全研究也正在计划当中。相关研究结果发表在2017年3月23日的Cell期刊上,论文标题为“Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging”。

长期睡眠不足或会让你患上阿尔兹海默病!

Ontarget抗癌t新突破!维生素C+抗生素:抗癌疗效增值100倍!

这种肽是在4年的试错过程中开发出来的,而且是建立在将近10年研究衰老细胞的弱点的基础上的,利用这些弱点,人们有望开发一种抵抗衰老的某些方面的治疗方案(Trends in Molecular Medicine, doi:10.1016/j.molmed.2016.11.006)。这种肽的工作机制是阻断与衰老相关的蛋白FOXO4指示另一种蛋白p53不要导致细胞自我摧毁的能力 。通过干扰这种FOXO4-p53交谈,它导致衰老细胞经历凋亡。基于这种肽的作用机制,它被称作修饰性FOXO4-p53干扰肽。

新闻阅读:Sleep and Alzheimer's disease connection

doi: 10.18632/oncotarget.18428

Cell:重磅!揭示抗CRISPR蛋白阻断CRISPR系统机制

你多长时间能睡一次好觉?美国疾病预防控制中心建议成人平均每天晚上需要至少7个小时的睡眠,来自梅奥诊所的神经生物学家Ronald Petersen说道,长时间睡眠不足或会增加机体患多种疾病的风险,包括阿尔兹海默病等。

肿瘤干细胞是致命肿瘤的源泉之一。而根据斯坦福大学完成的一项最新研究,维生素C+抗生素组合可以清除肿瘤干细胞。

doi:10.1016/j.cell.2017.03.012

显然,睡个好觉非常重要,而睡眠不足则会增加日间嗜睡、体重增加,甚至心脏病发生的风险,如今我们或许也应该将老年痴呆症列入疾病名单之中了。

根据这项发表在Oncotarget上的新研究,这种抗生素叫做多西环素如果在维生素C作用后加入,可以在实验室条件中高度有效地杀死肿瘤干细胞。

想象一下细菌和病毒一直处于军备竞赛之中。对很多细菌而言,一种抵抗病毒感染的防御线是一种复杂的RNA引导的“免疫系统”,即CRISPR-Cas。这个免疫系统的核心是一种识别病毒DNA和触发它破坏的监视复合物。然而,病毒能够反击,利用抗CRISPR蛋白让这种监视复合物不能够发挥功能。但是,在此之前,没有人准确地知道这些抗CRISPR蛋白如何发挥作用。

研究人员解释说这种方法提供了一种预防癌细胞耐药的新方法,展示了如何采用联合治疗克服肿瘤细胞耐药性。

如今,来自美国国家过敏症与传染病研究所、斯克里普斯研究所、蒙大拿州立大学、加州大学旧金山分校和加拿大多伦多大学的研究人员首次解析出病毒抗CRISPR蛋白附着到一种细菌CRISPR监视复合物上时的结构。他们发现抗CRISPR蛋白的作用机制是封锁CRISPR识别和攻击病毒基因组的能力。一种抗CRISPR蛋白甚至“模拟”DNA,让这种crRNA引导的检测机器脱轨。

Michael Lisanti教授设计了这项实验,他解释说:“我们现在知道一部分肿瘤细胞可以躲过化疗药物的杀伤,从而变成耐药细胞,而我们的这种新策略揭示了这个过程是如何发生的。”

Cell:40年谜题被解开 科学家成功解析巨细胞病毒和宿主之间的进化军备竞赛

“我们怀疑问题的答案在于某些肿瘤细胞可以变更它们的能量来源。因此当药物治疗减少某些能量来源时,这些肿瘤细胞可以通过其他的能量来源维持生存。”

doi:10.1016/j.cell.2017.03.002

这种新的联合方式防止了肿瘤细胞改变它们的能量来源,通过防止它们从其他物质获得能量,从而有效地让这些细胞饥饿。

最近,一项刊登在国际杂志Cell上的研究报告中,来自莫纳什大学的研究人员通过研究解开了一个长达40年的奥秘,文章中研究人员阐明了巨细胞病毒和机体免疫系统之间长期存在的一种进化军备竞赛。

Nature:重大发现!实验性药物GGTI-2418抑制肿瘤生长

人类的巨细胞病毒俗称人疱疹病毒5型,其能够感染全世界大约50%的成年人,而且也是引发发达国家新生儿出生缺陷的主要原因。这项研究中,研究者通过深入研究揭示了为何特殊病毒能够成功休眠以及不被机体免疫系统所识别。研究者Rich Berry说道,有些病毒非常“嚣张傲慢”,其会充分展现自身的活力和致病性,从而给患者带来严重的疾病症状,而巨细胞病毒则不同于这些病毒。

doi:10.1038/nature22965

巨细胞病毒能够不断进化,并且躲避机体的免疫系统,同时该病毒又会在合适的时候出现。而病毒所采用的这种策略就会诱发异常进化军备竞赛,而这好比就是异常象棋生死之战一样;然而在这种场景中,分子就会替代象棋棋子,其会被移动用来防御或者进行攻击,病毒和宿主都会共同进化,并且建立适合他们之间关系维系的策略。

美国莫非特癌症研究中心药物研发部主任Sebti博士及其团队和美国纽约大学朗格尼医学中心生物化学与分子药理学系主任Michele Pagano博士及其团队领导的一项新的研究发现药物香叶基香叶基转移酶(geranylgeranyltransferase)抑制剂GGTI-2418抑制Pagano团队发现的一种新的存在缺陷的PTEN癌症通路。相关研究结果于2017年6月14日在线发表在Nature期刊上,论文标题为“PTEN counteracts FBXL2 to promote IP3R3- and Ca2+-mediated apoptosis limiting tumour growth”。

Cell:北大学者利用一种化学混合物让多能性干细胞具备全能性

众所周知,完全功能性的PTEN通过抵抗PI3K/Akt肿瘤存活通路来抑制肿瘤生长。Pagano团队发现一种新的机制:PTEN通过阻止香叶基香叶基化的蛋白FBXL2结合和降解IP3R3来阻止细胞发生癌变。IP3R3是一种重要的抗癌“检测器”,能够识别过度增殖的细胞(这些细胞消耗异常高水平的能量),并且作为一种抗癌安全机制靶向它们以便让它们自我摧毁。PTEN结合到IP3R3上,保护它的癌症检测功能。然而,PTEN在很多癌症中是存在缺陷的,也因此FBXL2不受其监管;太多的IP3R3遭受降解,而且快速增值的细胞更不能够发生自我摧毁。

doi:10.1016/j.cell.2017.02.005

www.188jinbaobo.com 7

当科学家们谈论实验室干细胞是全能性还是多能性时,他们的意思是这些干细胞如胚胎那样有潜力产生体内的任何组织。然而,全能性干细胞与多能性干细胞(pluripotent stem cell, PSC)的差别在于前者能够产生支持胚胎的组织,如胎盘。这些组织被称作胚外组织(extra-embryonic tissue),在发育和健康生长中发挥着至关重要的作用。

Cell:颠覆传统认知!DNA双链复制存在极大的随机性

如今,在一项新的研究中,来自中国北京大学和美国沙克研究所的研究人员发现一种化学混合物能够让体外培养的小鼠PSC和人PSC做到这一点:产生胚胎组织和胚外组织。他们的方法可能对哺乳动物发育提供新的见解,也有助更好地建立疾病模型,开发药物,甚至实现组织再生。这种新的方法有望特别适合于为影响胚胎着床和胎盘功能的早期发育过程和疾病建立模型,并且可能为改进体外受精技术铺平道路。

doi:10.1016/j.cell.2017.05.041

Cell:“夜猫子”也是一种病 罪魁祸首竟是基因突变!

几乎地球上的所有生物都依赖于DNA复制。如今,来自美国加州大学戴维斯分校和斯隆凯特林癌症纪念中心的研究人员首次能够观察单个DNA分子的复制,并且取得一些令人吃惊的发现。首先,这种复制存在的随机性要比人们想象中的大很多。相关研究结果发表在2017年6月15日的Cell期刊上,论文标题为“Independent and Stochastic Action of DNA Polymerases in the Replisome”。论文通信作者为加州大学戴维斯分校微生物学与分子遗传学教授Stephen Kowalczykowski和斯隆凯特林癌症纪念中心研究员Kenneth Marians。论文第一作者为加州大学戴维斯分校博士后研究员James Graham。

DOI:10.1016/j.cell.2017.03.027

通过使用复杂的成像技术和付出很大的耐心,这些研究人员能够在来自大肠杆菌的DNA复制时观察它,并且测量复制体(replisome)如何在不同的DNA单链上发挥作用。

如果晚上你是一个夜猫子,那么早晨对你来讲或许就是一个恶魔了,这是你或许就要怪罪一个基因突变了;日前刊登在国际着名杂志Cell上的一项研究报告中,来自洛克斐勒大学等机构的研究人员通过研究发现,一种名为CRY1基因的突变会减缓机体的昼夜节律钟,正常的生物钟会告诉我们晚上何时睡觉,早上何时醒来,而携带“夜猫子”突变基因的个体或许拥有比大多数人都要长的生物钟,这就会使其保持清醒的时间较长。

DNA双螺旋是由两条方向相反的DNA单链组成的。每条单链是由一系列碱基组成的。两条单链按照碱基配对的原则形成DNA双链。

研究者Michael W. Young表示,相比在单一家族中所发现的和睡眠障碍相关的基因突变而言,CRY1基因的突变是一种相当有效基因改变,本文研究中我们就发现,在某些人群中,CRY1基因的突变在人群中所占的比例为1/75。

JNP:新型植物提取物或可强效抵御HIV感染 药效明显强于传统药物齐多夫定

据美国CDC数据显示,目前在美国有大约5000万至7000万美国成年人都患有睡眠或觉醒障碍,包括失眠症和发作性睡病等多种状况都会促进人们患上一些慢性疾病,包括糖尿病、肥胖和抑郁症。自我归类为夜猫子型的人群通常都会被诊断为睡眠相位后移综合症,患者的24小时醒睡周期会延迟,这就是其在正常人睡眠的时候还会处于非常有精力的状态。睡得晚往往也会带来一些负面影响,很多DSPD患者都会在其机体告诉他们应该按时工作或上学之前迫使他们醒来,而这不仅会影响个体在夜间失眠,也会使其在白天变得更加疲惫。

DOI:10.1021/acs.jnatprod.7b00004

Cell重磅!肠道细菌会影响抗癌药物疗效!

近日,一项刊登在国际杂志Journal of Natural Products上的研究报告中,来自伊利诺伊大学等多个机构的研究人员通过研究发现,一种来自东南亚用于治疗关节炎与风湿病的植物中或许含有一种比药物齐多夫定药效还强的潜在抗HIV化合物;文章中,研究者对4500多种植物提取物进行筛选,最终筛选出了这种名为patentiflorin A的化合物,其主要来自于柳叶爵床中,能够帮助有效抵御HIV。

DOI:10.1016/j.cell.2017.03.040

这项研究发现是多个研究机构多年合作的结果,研究人员通过对机体健康有应用价值的多个天然产物进行筛选,最终发现了这种新型的抗HIV的化合物,同时研究人员希望这种化合物能够明显改善低收入国家中人群的健康。

根据伦敦大学学院的一项关于线虫加工药物和营养物质的最新研究,抗癌药物的活性居然依赖于肠道微生物的种类。

柳叶爵床提取物通常来自于叶片、茎以及植物根部,此前研究人员在河内的菊芳国家公园收集到了这些植物,研究人员通过分析数千种植物提取物来鉴别哪种提取物能够有效抵御HIV、结核病、疟疾以及癌症。最终他们锁定了化合物patentiflorin A,这种化合物能够有效抑制HIV所需的关键酶类,该酶能够帮助HIV将病毒自身的遗传代码插入到宿主细胞的DNA中,AZT,作为1987年研究人员开发的首个抗HIV药物,如今其依然是治疗HIV的重要药物,AZT能够抑制病毒的逆转录酶,在对感染HIV的人类细胞进行研究后,研究人员发现,patentiflorin A能够明显抑制病毒的逆转录酶。

这项新发现强调了通过操纵肠道微生物和饮食改善肿瘤治疗的潜在价值以及研究药物疗效个体差异的价值。

www.188jinbaobo.com 8

这项研究近日发表在Cell上,由英国皇家学会和医学研究委员会资助,该研究报道了一种高通量筛选方法,揭示了宿主、肠道微生物和药物活性之间的复杂关系。

Cell:突破性成果!科学家发现能有效抵御耐药性细菌感染的新型抗生素—pseudouridimycin

“不同病人结直肠癌治疗的疗效差别巨大。我们想知道这是否是由于微生物改变了身体加工药物的过程。我们已经开发出了强大的系统,可以筛查药物、宿主与微生物之间的相互作用,或者是设计变革目前疗法的药物输送方式。”该研究的领衔作者Filipe Cabreiro博士说道。

DOI:10.1016/j.cell.2017.05.042

“我们忘记了许多生物生活在我们的体内,它们可以与我们消化的药物和食物相互作用。迄今为止,阐明宿主、微生物和药物之间的关系很困难。通常的微生物研究只关注微生物本身,这很不现实,但是通过使用我们的在体方法,我们发现了惊人的现象:肠道微生物可以增强或者抑制药物活性。”论文第一作者Timothy Scott说道。

近日,一项刊登在国际杂志Cell上的研究报告中,来自美国罗格斯大学等机构的研究人员通过研究发现了一种能够有效抵御耐药性细菌的新型抗生素—pseudouridimycin,这种抗生素由来自土壤样本中的微生物所产生,通过在测试管中进行试验,这种新型抗生素能够杀灭一系列药物敏感性和耐受性的细菌。

Cell:重大发现!抗生素耐药菌或在恐龙时代前的4.5亿年前就已产生

文章中,研究人员报道了这种新型抗生素pseudouridimycin的作用及机制;该抗生素能够通过一种结合位点来抑制细菌细胞中RNA聚合酶的功能,但其作用机制并不同于当前所使用的抗生素—利福平;因为pseudouridimycin能够通过一种不同与利福平的结合位点来抑制细菌生长,因此该抗生素往往不会促进细菌产生与利福平的交叉耐药性。

DOI:10.1016/j.cell.2017.04.027

抗生素pseudouridimycin起着细菌RNA聚合酶核苷类似物抑制剂的作用,也就意味着其能够模仿三磷酸核苷,而NTP是细菌RNA聚合酶用来和成RNA的基本结构原件,这种新型抗生素能够通过占领NTP结合位点同细菌RNA聚合酶上的该位点紧密结合,从而抑制NTPs的结合。该抗生素是首个核苷类似物抑制剂,其能够选择性地抑制细菌RNA聚合酶的功能,但对人类机体RNA聚合酶并无影响。

最近,一项发表于国际着名杂志Cell上的研究报告中,来自MIT和哈佛大学的研究人员通过研究发现,肠球菌作为院内感染的主要“超级细菌”或许产生自距今4.5亿年前的祖先,而那时候动物刚刚从海洋爬行到陆地生活,也就是说,这个时间还要早于恐龙时代,文章中,研究者阐明了肠球菌的进化历史,同时研究者还发现,这种细菌进化出了坚不可摧的特性,而且其也是如今引发医院内抗生素耐药感染的主要原因。

抗生素耐药性是引发全球人群健康的重大隐患,被认为是超级细菌的微生物往往对目前几乎所有抗生素都能够产生耐药性,当然这也是医院非常重视的问题,目前全球的科学家都在寻找能够解决抗生素耐药性的方法,因此,理解抗生素耐药性的进化或许就能够给研究者们带来一定帮助。

研究者Ashlee M. Earl博士表示,通过分析当今肠球菌的基因组和行为,我们就能够将时钟调回至这种细菌最初存在的形式,同时还能够绘制出肠球菌不断变化的图谱,理解肠球菌在环境中产生“特性”的分子机制或许能够帮助研究人员预测这种细菌适应抗生素及抗菌肥皂的方式,也为开发有效控制这种细菌扩散的方法提供了新的思路。

Cell:颠覆传统认知!DNA双链复制存在极大的随机性

doi:10.1016/j.cell.2017.05.041

几乎地球上的所有生物都依赖于DNA复制。如今,来自美国加州大学戴维斯分校和斯隆凯特林癌症纪念中心的研究人员首次能够观察单个DNA分子的复制,并且取得一些令人吃惊的发现。首先,这种复制存在的随机性要比人们想象中的大很多。相关研究结果发表在2017年6月15日的Cell期刊上,论文标题为“Independent and Stochastic Action of DNA Polymerases in the Replisome”。论文通信作者为加州大学戴维斯分校微生物学与分子遗传学教授Stephen Kowalczykowski和斯隆凯特林癌症纪念中心研究员Kenneth Marians。论文第一作者为加州大学戴维斯分校博士后研究员James Graham。

通过使用复杂的成像技术和付出很大的耐心,这些研究人员能够在来自大肠杆菌的DNA复制时观察它,并且测量复制体如何在不同的DNA单链上发挥作用。

Cell:为何免疫系统检测不到癌症?

doi:10.1016/j.cell.2017.06.016

癌症隐藏在免疫系统的视线之下。当癌细胞出现时,身体的天然肿瘤监控程序应当能够检测和攻击它们,而且仅当这些防御系统都失效时,癌症才能茁壮成长。在一项新的研究中,来自美国布莱根妇女医院的Niroshana Anandasabapathy博士和他的团队在30种在人外周组织内发生的癌症中发现一种至关重要的可能被一些癌症用来伪装自己的策略。相关研究结果发表在2017年6月29日的Cell期刊上,论文标题为“IFNγ-Dependent Tissue-Immune Homeostasis Is Co-opted in the Tumor Microenvironment”。

Anandasabapathy说,“我们的研究揭示出一种新的免疫治疗靶标,并且从进化的角度解释了免疫系统为何可能不会检测到组织中出现的癌症。我们发现的这种遗传程序有助免疫系统保持自我平衡。这种遗传程序的一部分阻止免疫系统摧毁健康的器官或组织,但是也可能在检测和抵抗癌症时留下一个盲点。”

Cell:大规模RNAi筛选鉴定出对癌症重要的基因

doi:10.1016/j.cell.2017.07.005

在一个新的研究中,研究人员在癌症中开展大规模的RNAi筛选,在将近400个人癌细胞系中系统性地抑制7800多个基因,从而为多种类型的癌症鉴定出潜在新的治疗靶标。这为会癌症患者治疗产生影响。相关研究结果发表在2017年7月27日的Cell期刊上,论文标题为“Project DRIVE: A Compendium of Cancer Dependencies and Synthetic Lethal RelationshipsUncovered by Large-Scale, Deep RNAi Screening”。论文通信作者为美国诺华生物医学研究所的E. Robert McDonald和Tobias Schmelzle。这项研究是DRIVE计划的一部分。

在这项研究中,这些研究人员使用了一种被称作癌细胞系百科全书(cancer cell line encyclopedia)的功能性工具。这种工具是由诺华生物医学研究所与布罗德研究所在几年前合作开发出的,它收集了1000多种不同的细胞系,并且记载了它们的突变和基因表达等分子特征。

Cell:重大进展!维生素C可促进白血病干细胞死亡,有望用于治疗白血病

doi:10.1016/j.cell.2017.07.032

在一项新的研究中,来自美国纽约大学医学院等研究机构的研究人员发现维生素C不会导致骨髓中存在缺陷的造血干细胞发生增殖形成血癌,而是促使它们发生分化和凋亡。相关研究结果于2017年8月17日在线发表在Cell期刊上,论文标题为“Restoration of TET2 Function Blocks Aberrant Self-Renewal and Leukemia Progression”。

这些研究人员说,在某些白血病患者中,已知某些基因变化会降低酶TET2促进白血病干细胞分化为成熟的最终会死亡的血细胞的能力。这项新的研究发现维生素C在经过基因改造缺失TET2的小鼠中可激活TET2的功能。论文共同通信作者Benjamin G. Neel说,“我们对高剂量的维生素C可能安全地治疗由TET2缺失性的白血病干细胞导致的血液疾病的前景感到激动人心,而且很可能是与其他的靶向疗法联合使用。”

在10%的急性髓性白血病患者中存在降低TET2功能的基因突变,在30%的骨髓增生异常综合症中存在TET2基因突变,在将近50%的慢性骨髓单核细胞性白血病中存在TET2基因突变。

Cell:重大突破!溶瘤病毒疗法有效改善癌症免疫疗法的疗效,总体反应率高达62%

doi:10.1016/j.cell.2017.08.027

免疫疗法有望治疗转移性黑色素瘤;但是对大多数患者而言,免疫治疗药物迄今为止辜负了人们的期望,提供很少的益处,甚至并不提供益处。在一项针对21名患者的1b期临床试验中,来自美国、瑞士、西班牙和澳大利亚的研究人员测试了免疫治疗药物派姆单抗和一种被称作T-VEC的溶瘤病毒组合使用时的安全性和疗效。结果提示着这种组合疗法获得62%的反应率,而且可能要比单独治疗时表现得更好。相关研究结果发表在2017年9月7日的Cell期刊上,论文标题为“Oncolytic Virotherapy Promotes Intratumoral T Cell Infiltration and Improves Anti-PD-1 Immunotherapy”。论文通信作者为美国加州大学洛杉矶分校琼森癌症中心免疫学项目主任Antoni Ribas。

派姆单抗属于一类被称作免疫检查点抑制剂的药物。免疫检查点抑制剂旨在绕过癌症保护自身免受免疫系统攻击的途径之一:肿瘤能够利用免疫检查点激活体内的天然保护性反应,因而抑制细胞毒性T细胞发起的攻击。这些药物的作用机制是取消对免疫检查点的刹车,从而允许T细胞攻击肿瘤。

Cell:突破性成果!科学家开发出能有效发现癌症药物的新方法

doi:10.1016/j.cell.2017.08.051

最近,一项刊登在国际着名杂志Cell上的研究报告中,来自斯克利普斯研究所的研究人员通过研究开发出了一种新型策略或有望帮助发现新型的抗癌疗法。研究人员利用这种新策略就能够寻找到对非小细胞肺癌生长非常重要的蛋白小型分子抑制剂,非小细胞肺癌在所有肺癌中占到了85%的比例,而且其对于药物疗法并不敏感。

研究者Benjamin F. Cravatt教授说道,这种新方法或能帮助我们鉴别出此前我们无法是别的一些癌症药物靶点,该方法基于我们近年来开发的一系列复杂的蛋白质组方法,这些方法的核心就是识别蛋白质中的特定氨基酸具有特殊的化学反应性,其能够促进分子形成不可逆的共价键结构或特殊的侦查分子,如今研究人员能够将这些分子应用于大量蛋白质,甚至多个细胞群中,来快速鉴别具有活性氨基酸的特殊蛋白质,而这些蛋白质或许就是潜在的药物靶点。

Cell:揭示肠道微生物组与自身免疫疾病存在关联

doi:10.1016/j.cell.2017.09.022

很多人把“细菌”这个单词与肮脏和恶心的东西关联在一起。加拿大卡尔加里大学卡明医学院的Pere Santamaria博士并不同意这一点。Santamaria说,我们体内的细菌,即微生物组,对我们的健康产生各种积极的影响。“我们肠道中的细菌实际上具有很多有益的功能。它们有助我们消化,阻止病原体感染和训练我们的免疫系统如何加以应对。”

如今,在一项新的研究中,Santamaria和卡明医学院的Kathy McCoy博士及其团队揭示出肠道微生物组中的一种调节促炎性细胞和抗炎性细胞的新机制。McCoy说,“我们发现由被称作拟杆菌的肠道细菌表达的一种蛋白快速地招募白细胞来杀死一种导致炎症性肠病(inflammatory bowel disease, IBD)的免疫系统细胞,从而阻止IBD发生。我们认为这种机制可能有助阻止大多数人患上IBD。”

Cell:重磅!揭示抗CRISPR蛋白阻断CRISPR系统机制

doi:10.1016/j.cell.2017.03.012

想象一下细菌和病毒一直处于军备竞赛之中。对很多细菌而言,一种抵抗病毒感染的防御线是一种复杂的RNA引导的“免疫系统”,即CRISPR-Cas。这个免疫系统的核心是一种识别病毒DNA和触发它破坏的监视复合物。然而,病毒能够反击,利用抗CRISPR蛋白让这种监视复合物不能够发挥功能。但是,在此之前,没有人准确地知道这些抗CRISPR蛋白如何发挥作用。

如今,来自美国国家过敏症与传染病研究所、斯克里普斯研究所、蒙大拿州立大学、加州大学旧金山分校和加拿大多伦多大学的研究人员首次解析出病毒抗CRISPR蛋白附着到一种细菌CRISPR监视复合物上时的结构。他们发现抗CRISPR蛋白的作用机制是封锁CRISPR识别和攻击病毒基因组的能力。一种抗CRISPR蛋白甚至“模拟”DNA,让这种crRNA引导的检测机器脱轨。